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Abstract

Experiment and computer simulation are two complementary tools to understand the dynamics and behavior of
biopolymers in solution. One particular area of interest is the ensemble of conformations populated by a particular
molecule in solution. For example, what fraction of a protein sample exists in its folded conformation? How often
does a particular peptide form an alpha helix versus a beta hairpin? To address these questions, it is important
to determine the sensitivity of a particular experiment to changes in the distribution of molecular conformations.
Consequently, a general analytic formalism is proposed to determine the sensitivity of a spectroscopic observable to
the underlying distribution of conformations. A particular strength of the approach is that it provides an expression
for a weighted average across conformational substates that is independent of the averaging function used. The
formalism is described and applied to experimental and simulated nuclear Overhauser enhancement (NOE) and
3J -coupling data on peptides in solution.

Introduction

Statistical mechanics shows that any simple observ-
able of a macroscopic system (a solution of protein
molecules) can be described as an ensemble average
over microscopic states (individual protein molecules
in that solution). When considering an observable at
a particular time, this ensemble average is carried out
linearly over all of theN molecules in the observed
volume:

〈A〉 = 1

N

N∑
i=1

Ai. (1)

Since the value of observableA is usually some
function of the molecular conformationr, A(r), the
sum over molecules above is typically re-cast as an
integral over possible conformationsr weighted by the
probability of each conformationp(r):

〈A〉 =
∫
A(r)p(r) dr, (2)
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where∫
p(r) dr = 1. (3)

Equation 2 shows how to calculate the value of
an ensemble average once the distributionp(r) of mi-
croscopic states in a sample is known. Unfortunately,
it is often straightforward to determine〈A〉 from the
experiment, while the underlying distributionp(r) is
experimentally inaccessible since the experiment is
both a time- and ensemble-average over molecular
conformations. In contrast, molecular dynamics and
Monte Carlo simulations provide a direct sampling of
microscopic statesr with probability p(r) but often
have difficulty reaching the time scales necessary to
yield converged values of〈A〉.

For bulk materials and macroscopic properties of
condensed matter systems, we are not particularly
interested in the distribution of microscopic states.
However, this is not the case for proteins and other
biomolecules. For these systems, conformation is in-
timately linked to function – for example, it can
modulate ligand affinity, as in theT andR states of
hemoglobin (Moffat et al., 1979) or affect the access
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of substrates to an enzyme active site, like the open
and closed forms of hexokinase (Bennett and Steitz,
1980) or the gated states of acetylcholinesterase (Zhou
et al., 1998). To understand the biological function it is
essential to understand the populations and dynamics
of these conformational substates.

Towards this end, theoretical and experimental
studies of biomolecules are rapidly converging. While
the first computer simulation of protein dynamics
was 3 picoseconds in simulated duration (McCammon
et al., 1977), today routine protein simulations span
several nanoseconds (Stocker et al., 2000) and typi-
cal peptide simulations reach 50 to 100 nanoseconds
(Daura et al., 1999b). In parallel, experimental meth-
ods have increased enormously in both time resolution
and molecular resolution. Single molecule fluores-
cence spectroscopy is providing information on the
behaviour (and variations) of individual enzymes and
proteins (Nie et al., 1994).

Recent long-timescale simulations of proteins and
peptides have underscored the fact that it is possible
for an ensemble of populations (or a trajectory of a
single molecule) to yield ensemble averages compat-
ible with a particular microscopic state even though
the simulated ensemble contains only fractional popu-
lations of the particular state in question. For example,
Daura et al. (1999a) have shown that molecular dy-
namics trajectories of aβ-heptapeptide populated a
particular ‘folded’ conformation only 50% of the time
at 340 K, yet yielded no NOE distance bound violation
greater than 0.06 nm.

This problem has actually been well known in the
spectroscopic community for some time. While it is
extensively discussed in the NMR literature (Jardet-
zky and Roberts, 1981), attempts to connect NMR
observables to the underlying conformational ensem-
ble have concentrated on simplified models of the
molecular geometry. For example, Braun et al. (1981)
showed that a uniform distribution of interatomic dis-
tances would yield an NOE signal if at least 10% of
the distribution falls within a threshold distance. For
the relationship between3J -coupling constants and
torsion angles, Jardetzky considered the influence of
averaging over several discrete conformations on the
apparent value of several NMR observables (Jardet-
zky, 1980), and showed that a particular value of an
observable is often compatible with a range of distrib-
utions over several different conformations. It is well
known that certain ranges of3J -coupling constants
provide limited structural information due to the de-
generacy or multiple-valuedness of the Karplus curve

relating3J -coupling constants and the corresponding
torsion angles (Syberts et al., 1987).

However, these analyses have been based on ei-
ther uniform distributions or sampling between a small
number of discrete model conformations. Considering
more realistic examples, Bonvin and Brunger (1996)
have explored how well a collection of NOEs de-
scribes a mix of several realistic conformations of a
protein loop. Similar analyses have been performed
using conformations from a molecular dynamics tra-
jectory by Daura et al. (1999a). In both cases it was
shown that the available NOE distance information
was not able to precisely define the conformations
populated by the molecule in question. This is a
significant issue given the use of time- and ensemble-
averaging schemes in modern NMR refinement pro-
tocols (Bonvin et al., 1994). More detailed compar-
isons have been performed between experimental and
simulated cross-relaxation rates and order parameters
(Bruschweiler et al., 1992; Philippopoulos and Lim,
1994; Beutler et al., 1996), but primarily with the
intent of reproducing the experimental observations.

If more observations are available than the number
of relevant degrees of freedom, it becomes possible
to use statistical techniques of sensitivity analysis or
component analysis to infer the underlying probabil-
ity distribution or potential (Ho and Rabitz, 1993;
Lazarides et al., 1994; Utz, 1998). In the single ob-
servable case we consider, such techniques are not
applicable since they require more data than parame-
ters. As a result we make use of a simple parametric
sensitivity analysis in this paper.

Although the problem of connecting the value of a
spectroscopic observable with its underlying ensemble
has probably been discussed the most in the context of
NMR, it is a general issue for any observation of a
molecule that undergoes some sort of averaging (van
Gunsteren et al., 1994, 1999). It is particularly cru-
cial for thermodynamic interpretations that have been
inferred from spectroscopic data, or for attempts to
describe the structure of highly flexible systems such
as short peptides and protein loops.

The formalism described in this paper permits the
analytic use of realistic probability distributions to
estimate the sensitivity of a particular spectroscopic
observable to the composition of the underlying en-
semble. We must note, however, that our analysis is
restricted to situations where the kinetics of confor-
mational exchange do not themselves influence the
observable measured for each molecule. For NMR,
this corresponds to the case where exchange between
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Figure 1. Double-well potentialf (r) (Equation 5) described by the parametersr1,1r, and1f .

conformations is slow with respect to overall rotation
but fast with respect to the macroscopic relaxation rate
(T2).

While we describe the averaging problem in terms
of single observables, a more complex case often oc-
curs where several observables are measured for a
particular sample. For example, cyclic structures are
commonly determined by considering all measured
3J -coupling values around the cycle and selecting the
conformation that best fits this set of data. Though
we do not deal with this case explicitly, it is straight-
forward to extend our single-observable formalism to
the realm of two or more observables. If the observ-
ables all correspond to the same degree of freedom,
r, then when taken as a whole they can significantly
constrain the underlying probability distributionp(r).
Finding the bounds onp(r) becomes a question of
solving a system ofN equations, one for each observ-
able but all with common parameters describing the
underlying distribution. When the observables apply
to different degrees of freedom (e.g.,〈A1〉 and 〈A2〉
with independent distributionsp(r1) andp(r2)), far
less information can be derived. In the case of non-
linear averaging, the formalism described herein can
be used to estimate the minimum fractional population
necessary to generate a particular ensemble average. If
the sum of these minimum fractions is greater than 1,

it implies that the underlyingp(r) probability distrib-
utions must be somewhat correlated. If the sum is less
than unity, however, all the individual ensemble aver-
ages can be satisfied even if the underlying probability
distributions are uncorrelated.

Sensitivity analysis

This section has the purpose of estimating analyti-
cally the effect of different distributions and averaging
methods on observables. Using the saddle-point ap-
proximation (see Appendix A), we can calculate a
weighted average for a distribution together with a
general averaging function, where the weights do not
depend on the averaging function itself. This provides
us with a function that can be readily used in the sen-
sitivity analysis of a given observable by analysing the
derivatives of the weighted average with respect to the
parameters describing the distribution.

In this work, we focus on the analysis of a bimodal
distribution. For many questions asked in a sensitivity
analysis, considering a bimodal distribution is suffi-
cient – the sensitivity of an averaging function towards
shifting two maxima of a distribution with respect to
each other can be analysed. If more complex distrib-
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Figure 2. (∂ḡ/∂(1r))/ḡ for the bimodal distribution (Equations 4 and 5) and averaging Equation 13 withβ = 100. (A) shows the derivative
as a function ofr1 and1r at1p = 0; in (B), the value of1p is 1. (C) shows the derivative as a function of1r and1p at r1 = 2, and (D) as a
function ofr1 and1p at1r = 2.

utions have to be considered, the formalism is easily
expandable to general distributions.

Weighted average in a bimodal distribution

For simplicity, we will denote the degree of freedom
over which is averaged byr. The averaging func-
tion defining the observable will be calledg(r). It is
easiest to analyse a bimodal distributionp(r) of the
conformational degree of freedomr, as the number
of parameters describing such a distribution is suffi-
ciently small. The bimodal distributionp(r) can be
described by a double-well effective potentialf (r)
(see Figure 1) through

f (r) = −1

β
logp(r), (4)

whereβ is one of the parameters describing the dis-
tributionp(r). The potentialf (r) is described by the
function

f (r) = 1

41r3

{
(r − r1)2

[
1r3(r − r1−1r)2

+41f(31r − 2r + 2r1)
]}+ a0, (5)

for 0 ≤ r ≤ ∞. Its functional form (Equation 5) has
been chosen such thatf ′(r1) = f ′(r1 + 1r) = 0,
f (r1) = a0, andf (r1 + 1r) = a0 + 1f . In order to
obtain a proper probability distributionp(r) through
Equation 4, it is required thatp(r) satisfies Equation 3.
In other words,a0 has to be chosen such that

∞∫
0

e−βf (r) dr = 1. (6)

This condition yields, using the saddle-point approx-
imation Equation 17 considering both minima of the
potential,

a0 = 1

β
log

[
2
√

π

β
1r (A+ B)

]
, (7)

with

A = 1√
1r4+ 121f

(8)

B = e−β1f√
1r4− 121f

(9)
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Figure 3. (∂ḡ/∂(1p))/ḡ for the bimodal distribution (Equations 4 and 5) and averaging Equation 13 withβ = 100. (A) shows the derivative
as a function ofr1 and1r at1p = 0; in (B), the value of1p is−0.98. (C) shows the derivative as a function of1r and1p at r1 = 2, and (D)
as a function ofr1 and1p at1r = 2.

Note that the condition

|1f | < 1r4

12
(10)

must be fulfilled. Thus we have four parameters de-
scribing the bimodal distribution:r1, 1r, 1f , and
β.

The average quantitȳg can then be calculated,
using the saddle-point approximation, as

ḡ = Ag(r1)+ Bg(r1 +1r)
A+ B . (11)

In the special case of1f = 0, this leads to

ḡ = 1
2 (g(r1)+ g(r1 +1r)) . (12)

Extension to general distributions

The formalism described above can easily be extended
to general distributions. For each new peak, two addi-
tional parameters have to be introduced in a similar
way as for the bimodal distribution, describing the
vertical and horizontal distances of the maxima with
respect to each other. Due to the saddle point approxi-
mation, each peak will contribute as a summand to the

average. Needless to say that the formalism cannot be
applied to a distribution without a single peak.

Application of the formalism to NOE distances

In this section, the derived formulae are used to inves-
tigate the effect of ther−6 averaging when obtaining a
value for an observable, i.e., for the case

g(r) = r−6. (13)

Analysis of ther−6 average

To analyse the influence of ther−6 averaging in a
double-well potential, it is of interest to look at the
behaviour of the derivatives∂ḡ/∂(1r) and∂ḡ/∂(1f )
for several cases. However, as1f is not very easy to
interpret directly, we will introduce the parameter

1p = p(r1 +1r)− p(r1)
p(r1)

= e−β1f − 1, (14)
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Figure 4. Parameter values defining bimodal distance distributions. All points in the surface(r1,1r,1p) yield the averagēg = 2−6 as
determined by Equations 4–11 and 14.

Table 1. Four example interatomic distance distributions taken from two MD simulations (Bürgi et al.,
2001; Daura et al., 1998, 1999b). Indicated are the parametersr1, 1r, 1f , andβ (Equations 4 and
5) of a bimodal distribution fitted to the simulated distributions. The last five lines show ther−6

weighted average distancer̄ (MD) calculated over the simulated distribution, the average distancer̄

(SPA) calculated using the saddle-point approximation (SPA) to the bimodal distribution, the upper
bound distancēr (exp.) derived from NOE experiments, and the value of the derivative of the average

ḡ =
〈
r−6

〉
with respect to1r and1p of the bimodal distribution

Atom pair Octapeptide in DMSO 150 ns Heptapeptide in MeOH 200 ns

1CB1-2HN 2CB2-5HN 2HN-5HCB 3HN-5HCB

r1 (nm) 0.318 0.455 0.314 0.364

1r (nm) 0.117 0.125 0.440 0.405

1f (nm4) −1.12× 10−6 −1.23× 10−6 2.16× 10−4 8.54× 10−5

β (nm−4) 8.72× 105 9.25× 104 3.62× 103 4.50× 103

r̄ (MD) (nm) 0.335 0.487 0.357 0.402

r̄ (SPA) (nm) 0.371 0.495 0.336 0.397

r̄ (exp.) (nm) 0.404 0.471 0.330 0.340
∂ḡ

ḡ∂(1r)
(nm−1) −4.82 −2.65 0.186 0.091

∂ḡ
ḡ∂(1p)

−0.154 −0.132 −0.650 −0.538
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Figure 5. Distance distributionsp(r) that yield an averagēg =
〈
r−6

〉
= 2−6. The parameter values areβ = 100 for (A–I),1r = 2 for (A–F),

1p = 5 for (G–I), andr1 = 2.0,1p = −0.99 (A), r1 = 1.87,1p = −0.5 (B), r1 = 1.79,1p = 0 (C), r1 = 1.59,1p = 2 (D), r1 = 1.46,
1p = 5 (E), r1 = 1.34,1p = 10 (F),r1 = 1.45,1r = 3 (G),r1 = 1.45,1r = 4 (H), r1 = 1.45,1r = 5 (I).

where p(r) denotes the distribution of the degree
of freedomr, and therefore1p denotes the relative
height difference of the two peaks of the bimodal
distribution.

The derivative(∂ḡ/∂(1r))/ḡ for β = 100 is
shown in Figure 2.

According to Equation 10,|1f | < 1r4/12 must
be fulfilled. At the border surface1f = − log(1 +
1p)/β = 1r4/12, the value of the derivative of̄g
with respect to1r goes to infinity for negative1p
and to minus infinity for positive1p. Qualitatively, all
the derivatives are negative. That means, when chang-
ing to a bigger1r, the average

〈
r−6

〉
gets smaller,

i.e. the average distance
〈
r−6

〉−1/6
gets bigger. From

Figure 2A,1p = 0, we can see that changing1r
has hardly any influence on the average unless1r is
very small. The average is not defined at1r = 0,
and therefore, the derivative goes to minus infinity. If
1p = 1 (Figure 2B), the average is not defined for

1r ≤ 0.537. Otherwise, the surface looks the same as
the one in Figure 2A. The same situation is observed in
Figure 2C (r1 = 2): the derivative is nearly zero until
it approaches the disallowed area for1r. Figure 2D
(1r = 2) shows clearly what we have seen already in
Figure 2A–C, namely that the value of the derivative
only slightly depends on the choice ofr1 and1p as
long as1r � (12|1f |)1/4.

Furthermore, if we want to extend this analysis to

the observable
〈
r−6

〉−1/6
, we must consider the Taylor

expansion(
ḡ + ∂ḡ

∂(1r)
1(1r)

)−1/6 =
ḡ−1/6− ḡ−7/6 1

6
∂ḡ

∂(1r)
1(1r)+ · · ·

(15)

Therefore, the influence of a slight change in1r on
the average distance is even reduced more.

The dependence of(∂ḡ/∂(1r))/ḡ on r1 and1r
for negative1p is not separately shown because, as
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Figure 6. Four examples of atom-atom distance distributions taken from two MD simulations. (A) shows the distribution of the distance
1CB1-2HN between residues 1 and 2 and (B) the distribution of the distance 2CB2-5HN between residues 2 and 5 of an octapeptide in DMSO
(150 ns at 298 K) (Bürgi et al., 2001), (C) the distribution of the distance HN to H-CB between residues 2 and 5 and (D) the distribution of the
corresponding atoms of residues 3 and 5 of aβ-heptapeptide in methanol (200 ns at 340 K) (Daura et al., 1998, 1999b). The solid curves are the
distribution of the distances as taken from the MD simulations, the dashed curves are obtained by fitting a bimodal distribution to the simulated
distributions. The solid line indicates the value of ther−6 average over the simulated distribution, the dashed line the average as calculated
using the saddle-point approximation, and the dashed-dotted line the upper bound derived from NOE measurements.

can be inferred from Figures 2C and 2D (r1 = 2 and
1r = 2 respectively), the influence of changing1r is
always about zero for negative1p.

The derivative(∂ḡ/∂(1p))/ḡ for β = 100 is
shown in Figure 3. As in the previous case, the values
of the derivatives hardly depend onr1 and1r, as long
as1r � (12|1f |)1/4. The value of the derivative is
around−1 for 1p = −0.98 (Figure 3B) and around
−0.5 for1p = 0 (Figure 3A). It vanishes for larger
1p (Figures 3C and 3D), as then the first maximum
in the distribution dominates the average completely.

We can conclude that ther−6 average is even more
insensitive to changes in1p than to changes in1r.

Analysing the space of parameter values that yield
the same average is even more interesting than inves-
tigating the derivatives of̄g. The space that yields the
averageḡ = 2−6 is shown forβ = 100 in Figure 4.
For each pair1r and1p, a value forr1 can be found
that yields the averagēg = 2−6, as long as Equation
10 is fulfilled. As1p approaches−1, r1 approaches
the value 2. This is clear, as in this case, there would
be only one maximum in the distribution. It is also
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Figure 7. (∂ḡ/∂(1r))/ḡ for the bimodal distribution (Equations 4 and 5) and averaging Equation 16 withβ = 100. (A) shows the derivative
as a function ofr1 and1r at1p = 0, in (B), the value of1p is−0.95. (C) shows the derivative as a function of1r and1p at r1 = 0, and (D)
as a function ofr1 and1p at1r = −π.

Table 2. Four example torsion-angle distributions taken from two MD simulations (Bürgi
et al., 2001; Daura et al., 1998, 1999b). Indicated are the parametersr1, 1r, 1f , andβ

(Equations 4 and 5) of a bimodal distribution obtained by fitting such a distribution to the
simulated distributions. The last five lines show the average3J -coupling constant̄r (MD)
calculated over the simulated distribution, the average3J -coupling constant̄r (SPA) calculated
using the saddle-point approximation (SPA) to the bimodal distribution, the experimentally
determined3J -coupling constant̄r (exp.), and the value of the derivative of the average

ḡ =
〈
a cos2(r)+ b cos(r)+ c

〉
with respect to1r and1f of the bimodal distribution

Octapeptide in DMSO 150 ns Heptapeptide in MeOH 200 ns

Residue 2Aib 6Leu 2Ala 6Ala

Torsion angle H-N-CA-CB H-N-CA-HA C-N-CB-CA N-CB-CA-C

r1 (rad) −1.94 −2.165 −3.05 1.18

1r (rad) 1.60 −0.963 3.18 1.71

1f (rad4) 2.66× 10−2 2.08× 10−3 1.09 0.115

β (rad−4) 14.4 65.2 3.96 16.4

r̄ (MD) (Hz) 1.59 6.99 8.93 4.11

r̄ (SPA) (Hz) 1.62 7.06 9.58 4.04

r̄ (exp.) (Hz) – 6.8 9.2 3.9
∂ḡ

ḡ∂(1r)
(rad−1) 0.60 8.0× 10−3 −2.1× 10−3 6.9× 10−2

∂ḡ
ḡ∂(1p)

0.31 6.3× 10−2 − 8.2× 10−2 1.9
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Figure 8. (∂ḡ/∂(1p))/ḡ for the bimodal distribution (Equations 4 and 5) and averaging Equation 16 withβ = 100. (A) shows the derivative
as a function ofr1 and1r at1p = 0, in (B), the value of1p is−0.1. (C) shows the derivative as a function of1r and1p at r1 = 0, and (D)
as a function ofr1 and1p at1r = −π.

obvious that the larger1p is, the smallerr1 has to
be to compensate for the larger (second) maximum
in the distribution. What is rather surprising, how-
ever, is that even for1p = 5, the value ofr1 is
hardly dependent on1r. This is another effect of the
dominant contribution of low distances within ther−6

averaging.
As the averagēg is hardly dependent on1r, we

can generate very different distributions that each yield
the averagēg = 2−6. A selection of such distributions
is shown in Figure 5. Figure 5A shows the situation
as it is expected to yield a singler−6 weighted av-
erage distance of 2. However, the distributions can
be very different as Figures 5B–I illustrate. Looking
at Figures 5F–I, for instance, it is intuitively hard to

believe that the average distance is
〈
r−6

〉−1/6 = 2. All
examples in Figure 5 are quite moderate – it is easy to
pick more extreme examples by taking large values for
1p and1r.

Examples from molecular dynamics simulations

To illustrate the analysis of the previous section and
emphasise its relevance, it is of interest to show the

distributions of distances obtained through molecular
dynamics (MD) simulations. Figure 6 shows four dis-
tributions of distances obtained from two simulations
(Daura et al., 1998, 1999b; Bürgi et al., 2001).

The location of the two maxima of the MD dis-
tribution and thus the parametersr1, 1r, and1f of
the bimodal distribution (Equations 4 and 5) was de-
termined by a polynomial fit. The parameterβ was
obtained by a nonlinear fit to the MD distribution.
The data for the fitted bimodal distribution curves as
well as the calculated averages of Equation 13, the
experimentally determined NOE distance bounds and
the value of the derivatives of the averaging function
with respect to the parameters1r and1p of the fitted
bimodal distribution are given in Table 1.

We see thatβ is large enough for the saddle-point
approximation to be valid. Furthermore, it is interest-
ing to note the difference between the two peptides:
Whereas the octapeptide has in most distributions a
positive1p, the heptapeptide has for the crucial dis-
tributions mostly a negative1p. This might be one of
the reasons why the NOE distances for the latter as
calculated from the MD trajectories match the experi-
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Figure 9. Parameter values defining bimodal torsion-angle distributions withβ = 100 and1p = 0 that yield the averages̄g = 2 (A), ḡ = 3
(B), ḡ = 4 (C), ḡ = 5 (D), ḡ = 6 (E), ḡ = 7 (F), ḡ = 8 (G), ḡ = 9 (H), as well as of the bimodal distributions that yield the averageḡ = 5 for
β = 100 and1p = −0.1 (I),1p = −0.39 (J),1p = −0.63 (K), and1p = −0.99 (L).
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Figure 10. Torsion-angle distributionsp(r) that yield the averagēg =
〈
a cos2 r + b cosr + c

〉
= 5. The parameter values areβ = 100 for

(A–I), 1r = 1 for (A–E),1r = 2 for (F–I) and1p = 0 (A),1p = −0.1 (B),1p = −0.39 (C),1p = −0.63 (D),1p = −0.99 (E),1p = 0
(F),1p = −0.39 (G),1p = −0.63 (H),1p = −0.99 (I).

mental bounds better; the averages are less sensitive to
changes in the distributions, which is also indicated by
the smaller values of the derivatives ofḡ with respect
to1r and1p for the heptapeptide.

Application of the formalism to 3J-coupling
constants

In this section the derived formalism is used to analyse
the effect onto the3J -coupling constants using the
averaging function

g(r) = a cos2 r + b cos r + c. (16)

For consistency with the previous sections we are us-
ing the same notation:r will in the case of3J -coupling
constants denote the corresponding torsion angle. As
the analysis yields only small qualitative differences
for different Karplus parametersa, b, andc, all numer-

ical examples are based on the following Karplus pa-
rameters for a H-N-Cα-Hα torsion angle:a = 6.4 Hz,
b = −1.4 Hz,c = 1.9 Hz. Furthermore, it is sufficient
to discuss cases for1p < 0 (1f > 0), since the
absolute maximum of the distribution can always be
denoted asr1 with 1r being chosen accordingly, due
to the periodicity of the cosine function.

As in the previous section, we shall first analyse
the derivatives of the averagesḡ with respect to1r
and1p. Figure 7 shows the derivative(∂ḡ/∂(1r))/ḡ,
and Figure 8 shows the derivative(∂ḡ/∂(1p))/ḡ, both
atβ = 100.

Unlike in the case of NOEs, in the case of3J -
coupling constants both derivatives can be either pos-
itive or negative. The sign and magnitude of the
derivatives are dependent on the choice ofr1 and1r.
Both derivatives depend hardly on1p, (∂ḡ/∂(1r))/ḡ
approaches 0 for1p = −1 and has its greatest values
for 1p = 0, whereas(∂ḡ/∂(1p))/ḡ has its greatest
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Figure 11. Four examples of torsion-angle distributions taken from two MD simulations. (A) shows the distribution of the torsion angle
H-N-CA-CB of residue 2Aib and (B) the distribution of the torsion angle H-N-CA-HA of residue 6Leu of the octapeptide in DMSO (150 ns
at 298 K) (Bürgi et al., 2001), (C) the distribution of the torsion angle C-N-CB-CA of residue 2Ala and (D) the distribution of the torsion
angle N-CB-CA-C of residue 6Ala of theβ-heptapeptide in methanol (200 ns at 340 K) (Daura et al., 1998, 1999b). The solid curves are
the distribution of the torsion angles as taken from the MD simulations, the dashed curves are obtained by fitting bimodal distributions to the
simulated distributions.

absolute values for1p = −1 (Figures 8C and 8D).
Both derivatives go to plus or minus infinity when1r
approaches the disallowed region defined by Equa-
tion 10 (Figures 8B and 8C).(∂ḡ/∂(1p))/ḡ is not
defined at1r = 0. However, apart from the disal-
lowed regions, we can conclude the same as for the
r−6 averaging: The magnitude of both derivatives is
rather small, namely between−1 and 1. Therefore,
the influence of slightly changing the torsion-angle
distributions will generally be small.

As for the NOEs, we have calculated a set of
torsion-angle distributions for several average3J -

coupling constant values (see Figure 9). As we can see,
there are several choices for torsion angle distributions
that yield the same average3J -coupling constant. A
selection of torsion angle distributions that yield the
averageḡ = 5 is shown in Figure 10. It gives an
impression of how diverse these distributions can be
and yet have the same average3J -coupling constant
value.
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Examples from molecular dynamics simulations

As for the r−6 averaging, we illustrate the analysis
of the previous section with torsion-angle distributions
obtained from the same two simulations (Bürgi et al.,
2001; Daura et al., 1998, 1999b). Figure 11 shows four
examples of torsion-angle distributions taken from
these simulations. To obtain the bimodal distributions,
the same fitting procedure as for the distance distri-
butions was applied. The data for the fitted bimodal
distribution curves as well as the calculated averages
of Equation 16, the experimentally determined3J -
coupling constants and the value of the derivatives of
the averaging function with respect to the parameters
1r and1p of the bimodal distribution are shown in
Table 2.

Even thoughβ is much smaller for all example
torsion-angle distributions than it was for the NOE
distances, the saddle-point approximation still seems
to be quite accurate. All four averages are very insen-
sitive to changes of the distributions. All derivatives
of the average with respect to the distribution para-
meters are of the order of 10−3 to 101. For small
changes in the distribution, the average will not change
significantly.

Conclusions

We have presented a formalism to analyse a general
averaging functiong(r), which represents an observ-
able, in terms of sensitivity of the average of the
observable to small changes in the distribution of the
degree of freedomr. The formalism is based on the
saddle-point approximation, which yields as the aver-
age over a bimodal distribution a weighted average,
where the weights do not depend on the averaging
function. Therefore, it is straightforward to calculate
derivatives of the weighted average with respect to the
parameters of the bimodal distribution.

For the two examples of averaging functions given
here,g(r) = r−6 (NOEs) andg(r) = a cos2(r) +
b cos(r) + c (3J -coupling constants), it was shown
that the averages are not very sensitive to a variety of
changes in the distribution ofr. Furthermore, we have
calculated the range of parameters that yield the same
average value and shown the diversity of distributions
that yield the same average value. For the cases we
have studied, this implies that an experimentally aver-
aged value does not contain much information on the
underlying distribution of molecular conformations.

It is our expectation that the approach outlined in
this paper will be generally useful as a quantitative
way both to assess experimental data or simulation
results and as a way to deepen and make more pre-
cise the connection between computer simulations and
experimental data.
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Appendix A: Saddle-point approximation

The formulation of the theorem as well as the proof
follow the ideas given in (Jänich, 1983).
Theorem.Let g(r) and f (r) be functions that are
sufficiently many times differentiable on an interval
(a, b). The casesa = −∞, b = +∞ are also al-
lowed. The functionf (r) should be real and have
a non-degenerate absolute minimum atr0 ∈ (a, b).
Furthermore, there should existδ > 0 and ε > 0 so
that f (r) is decreasing monotonically on the interval
(r0 − ε, r0) and increasing monotonically on the in-
terval (r0, r0 + ε) and thatf (r) ≥ f (r0)+ δ for all r
outside the interval(r0−ε, r0+ε). g(r) should be cho-
sen such thatg(r0) 6= 0 and that

∫ b
a |g(r)|e−βf (r) dr

exists for aβ = β0 (and therefore for allβ ≥ β0). The
following expression is then valid:

b∫
a

g(r)e−βf (r) dr =

g(r0)e
−βf (r0)

[√
2π

f ′′(r0) · β + O

(
1

β3/2

)]
(17)

Proof. All contributions of the integral outside the
interval (r0 − ε, r0 + ε) can be neglected, as their
absolute value is≤ e−δβeδβ0 · ∫ ba |g(r)|e−β0f (r)dr.
These contributions are therefore absorbed in the er-
ror termO(β−3/2). f (r) can be expanded aroundr0:
f (r) = f (r0) + 1

2f
′′(r0)(r − r0)2 + higher-order

terms. Let us callf ′′(r0) = c2, sincef (r0) is a
non-degenerate minimum. If we also expandg(r) =
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Figure 12. Conditions forf (r) are thatf (r) ≥ f (r0)+ δ for all r outside the interval(r0 − ε, r0 + ε).

g(r0)+ c1(r − r0)+ (r − r0)2ψ(r) aroundr0, all that
remains to be solved is the integral
r0+ε∫
r0−ε

g(r)e−βf (r0)− 1
2βc2(r−r0)2 dr =

g(r0)
r0+ε∫
r0−ε

e−βf (r0)− 1
2βc2(r−r0)2 dr

+c1

r0+ε∫
r0−ε

(r − r0)e−βf (r0)− 1
2βc2(r−r0)2 dr

+
r0+ε∫
r0−ε

(r − r0)2ψ(r)e−βf (r0)− 1
2βc2(r−r0)2 dr.

(18)

The first term is approximated by

g(r0)e
−βf (r0)

r0+ε∫
r0−ε

e− 1
2βc2(r−r0)2 dr ' g(r0)e−βf (r0)

∞∫
−∞

e− 1
2βc2r2

dr = g(r0)e−βf (r0)
√

2π

βc2 .

(19)

The second term vanishes, as the integrand is anti-
symmetric aroundr0. Sinceψ(r) is bounded in the
interval(r0 − ε, r0 + ε), i.e. ψ(r) ≤ c2 with c2 > 0,
the third term is approximated by

e−βf (r0)
r0+ε∫
r0−ε

(r − r0)2ψ(r)e− 1
2βc2(r−r0)2 dr

' c2e
−βf (r0)

∞∫
−∞

r2e− 1
2βc2r2

dr = c2
βc2

√
2π
βc2 .

(20)

Therefore, the third term is also included in the error
termO(β−3/2).
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